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A numerical solution of the conjugate heat-exchange problem for reflection of a 
normally incident viscous shock wave from a rigid wall is used to find the non- 
steady-state temperature of the wall and the thermal flux into the wall. 

The problem of nonsteady-state heat exchange between a gas and a solid thermally conduc- 
tive wall upon reflection from the latter of a viscous shock wave arises in the study of physi- 
cochemical properties of gases in shock tubes [I], ignition of solid fuels, and a number of 
other applications. Two stages can be distinguished in such a heat-exchange process. In 
the first (initial) stage, simultaneous formation of the reflected wave "front" and a thermal 
boundary layer in the gas near the wall surface occur. This process is significantly depen- 
dent on the thermal regime of the wall, which affects the further evolution of the flow [2]. 
Description of the gas flow in the first stage requires use of the complete Navier-Stokes 
equations. The second stage is characterized by the fact that the viscous structure of the 
reflected wave "front" is formed and the region of the wave "front" and the thermal boundary 
layer are completely separated. In this case development of the thermal boundary layer is 
related to the dynamics of the reflected "front" only through the boundary conditions on the 
outer edge of the layer. Asymptotic theory can then be used to describe heat exchange in 
the boundary layer [2, 3]. 

The initial stage of reflection of a viscous shock wave with uniform accompanying flow 
has previously been studied numerically [4, 5] in two limiting cases where either the wall 
temperature is constant or the thermal flux into the wall is assumed equal to zero. Heat 
exchange within the wall itself was not considered. In the present study the problem of gas 
heat exchange with the wall will be solved in the conjugate formulation and simultaneous evo- 
lution of temperature fields in the gas and wall will be studied. Such an approach is ob- 
viously more correct and not only allows consideration of "intermediate" heat regimes, but 
also permits establishment of the limits of applicability of the limiting formulations refer- 
red to above. 

We will direct a Cartesian coordinate x along the normal to the wall in the direction 
of the gas, taking the origin at the surface. To describe the one-dimensional nonsteady- 
state motion of the compressed viscous thermally conductive gas during shock wave reflection 
from the wall, we use the system of equations: 
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In the calculations the value n = 0.76 was used [6]. The value c v is assumed constant. Wall 
heating is described by the thermal conductivity equation 
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System (I)-(2) will be considered with the following boundary conditions (on the wall 
surface conjugate conditions are imposed: equality of temperatures and thermal fluxes): 
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The initial conditions are formulated in the following manner. At time t = 0 in the 
gas region (at x ~ 0) "viscous" 0, u, and T profiles are specified in the incident shock wave. 
The calculation method will be described below. In the wall (x & 0) the temperature at time 
t = 0 is assumed constant and equal to the unperturbed gas temperature ahead of the incident 
shock wave. 

For a numerical solution of the problem, in place of the coordinate x we introduce a 
mass Lagrangian coordinate ~ in the gas region and an extended coordinate n in the wall region: 

x 
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Use of the Lagrangian coordinate ~ in the problem of wall heating by the shock wave has 
an important advantage. In the thermal boundary layer in the gas, which develops upon reflec- 
tion of the shock wave, an abrupt cooling of gas layers occurs adjacent to the wall, which 
leads to a significant increase in gas density in this region [4]. As a result large gradients 
in parameter values (density and temperature) develop, these gradients being more significant, 
the slower the wall heats at the interphase boundary. It is obvious that in this case the 
nodes of the uniform calculation grid over the coordinate ~ will automatically be bunched 
near the wall in physical space and thus, the grid to a certain degree adapts to the solution 
obtained in the region of primary interest. 

We will introduce the dimensionless variables 
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The system of equations (i), (2) with boundary conditions (3) in the coordinates of Eq. (4) 
and dimensionless variables of Eq. (5) takes on the form (bar omitted) 

Op p~ Ou 
ot ~ 

Ou - T  Op 07" + 4 Op Ou + 4 d~ OT Ou 4 02u 

0V - - ( ? - - l ) p  Ou ( 4 0_~_) 
O'---t- = - - ~  T - -  [t + 3 ( 6 )  

0TT 0~TT YT ~ . 
Ot --  0~l ~ ' p = p T '  ~ t = T  ~, % =  ( ? _ _ l ) P r  ' 

910 



~1 O: u O, T TT, o~ a T  0 %  
o~ an 

- .  + oo: - -  __Ou __ __aT __ O, ~1 --+ -~ oo: _ _ = 0 %  O. 

a~ a~ a~ an 

Here ~ = r T is the dimensionless thermal activity of the wall material [7] (CT, 0T, %T 
are dedimensionalized with Eq. (5)). 

The initial p(~), u($), and T($) profiles are calculated in the following manner. For 
a given incident shock wave Mach number M, steady-state Navier-Stokes equations for the com- 
pressible gas, written in an Eulerian cordinate system which moves at the constant velocity 
of the incident front, are used to determine parameter profiles in a steady-state viscous 
shock wave in a manner similar to that of [8]. The profiles thus obtained were recalculated 
for an Eulerian coordinate system fixed to the wall. Then a recalculation to the mass La- 
grangian coordinate ~ is accomplished with the aid of the first relationship of Eq. (4), and 
the results dedimensionalized with Eq. (5). In the dimensionless variables the initial con- 
ditions have the form t = 0, 0 & N < ~; T T = i. 

The conjugate problem thus formulated, Eq. (6), was solved numerically by a spline- 
finite difference method. Approximation of functions and their derivatives in the time 
layer was accomplished with the aid of cubic splines, while time derivatives were approxi- 
mated by finite differences. Such an approach has been proposed previously and used for solu- 
tion of the Burgers equation [9, i0], which in a certain sense is a model of the one-dimen- 
sional nonsteady-state Navier-Stokes equations. Use of cubic splines gives fourth- and 
second-order approximations on the uniform grid for the first and second derivatives. On 
the nonuniform grid (used in the wall region) the order of approximation of the second deriv- 
ative is maintained. It was shown in [9] using examples of the Burgers equation and a number 
of model.hydrodynamics problems that the spline finite-difference method gives more accurate 
results than conventional three-point finite-difference methods. In the conjugate heat-ex- 
change problem under consideration here the significant point is the formulation of the bound- 
ary condition on the wall surface for the first derivative of temperature, which in the final 
reckoning is used to calculate the thermal flux into the wall. The high order of approxima- 
tion of the spatial derivatives is then an important advantage of the method. A special study 
of the accuracy of the spline finite-difference method using the problem of reflection of a 
viscous shock wave from a thermally insulated wall showed that not only the unknown functions, 
but also their first derivatives agreed well with an exact solution for the profiles in the 
reflected shock wave. 

The calculation region in the gas was limited to the value ~, at which at the initial 
moment the dimensionless "viscous" parameters on the wall ($ = 0) and at ~ = $~ differ from 
their asymptotic values by less than 10 -6 (for example, at M = 2, $= = 68.5). The grid step 
At was taken equal to $~/N. As a rule, in the calculations the value N = 50 was used. To 
monitor accuracy, individual realizations were recalculated with a step twice as small. The 
calculation region within the wall was limited to the coordinate D= = 25-50. The first three 
An steps from the interphase boundary were set equal to &$/4, after which the step size was 
increased geometrically by a factor of 1.064. Determination of all derivatives in the time 
layer was accomplished by the drive method. Formulation of the boundary conditions for the 
corresponding difference equations on the external boundaries of the computation region pre- 
sented no difficulty. On the phase boundary the temperature derivatives under conjugate con- 
ditions were approximated by unilateral expressions of fourth-order accuracy. Implicitand 
explicit methods were used for time. Calculations in the explicit method were performed in 
the following sequence: first the continuity equation was considered, then the energy equa- 
tion, and finally the momentum equation, with the density and temperature values obtained 
in the subsequent time layer being used immediately in the remaining equations. The process 
of iteration over nonlinearity was organized similarly in the implicit methods. It developed 
that for the given problem the explicit method proved more economical, so it was used for all 
calculations. 

Numerical results were obtained for Pr = 0.75, y = 1.4, M = 2 and 5 with e varied from 
0 to ~10 s Some principles of the heat-exchange process will be presented below for M = 2. 

Figure i shows temperature profiles in the gas at various times for reflection of a shock 
wave from a wall with different values of the parameter e. For comparison, reflected wave 
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Fig. i. Temperature profiles in incident (i, t = 0; 2, 4.38) and 
reflected (3, t = 8.03; 4, 10.95; 5, 13.14) shock waves for various 
values of parameter E: solid lines, e = 75.8; dashes, 6.82; dash- 
dot, thermally insulated wall. t, e, dimensionless. 

Fig. 2. Temperature distribution in wall during shock wave reflec- 
tion (i, t = 6.31; 2, 7.80; 3, 8.03; 4, 10.95; 5, 13.14) for various 
values of parameter e: solid lines, e = 6.82; dashes, 75.8; q, t, 
E, dimensionless. 

parameters are shown for an adiabatic wall. In the incident wave the temperature profiles 
are independent of ~ and all lines (solid, dashed, and dash-dot) coincide at t = 0 and t = 
4.38. 

It is evident from Figs. 1 and 2 that in the process of shock-wave reflection the quan- 
tity e has a strong effect on the temperature field evolution in both the gas and the wall. 
With increase in e there is a more intense delay in formation of the reflected shock-wave 
viscous structure and cooling in the departure of the reflected front as compared to the case 
of the adiabatic wall. A similar difference in the behavior of the gas near the wall for 
the limiting models of an ideally thermally conductive wall and a thermally insulated wall 
was established in [4]. As is evident from Fig. 2, the thickness of the heated layer in the 
wall increases rapidly with time, although in the variables used at a given t it is only 
weakly dependent on e. 

For the e values shown in Figs. 1 and 2, the process of thermal interaction of a shock 
wave with a wall differs markedly from the limiting cases, where instead of conjugate condi- 
tions on the phase boundary an adiabatic state or constant temperature is assumed. In both 
limiting cases the process of wall heating was not considered in studying the evolution of 
the flow in the gas. It was assumed that heat transfer in the wall could be described by 
the thermal conductivity equation with boundary conditions on the surface for temperature 
or thermal flux found by solution of the gas dynamic problem. Choice of a wall thermal re- 
gime obviously depends on the values of the parameters defining the problem. In the given 
problem one of the most important defining parameters is the dimensionless thermal activity 
of the wall material e. In connection with this, it is of interest to determine the ranges 
of e over which the simpler limiting formulations can be employed instead of the conjugate 
problem. To study this question we turn to an examination of the time dependence of wall 
surface temperature and thermal flux into the wall for various values of e. 

As is evident from Fig. 3a, the temperature on the phase boundary increases abruptly 
to some value and then remains practically constant. This result is in qualitative agree- 
ment with the experimental data of [ii], in which it was found that after a discontinuous con- 
stant over a long period of time, including the second stage of the reflection process in 
which the viscous shock "front" and the thermal boundary layer in the gas are completely 
separated. It follows from Fig. 3 that at fixed t the quantity T w decreases monotonically, 
while qw increases monotonically with increase in e. At e ~ l0 B the functions Tw(t) and 
qw(t) are practically independent of e. Calculations performed also show that at e ~ 103 
the wall temperature is practically constant and equal to its initial value (over the time 
interval considered it increases no more than 5%) so that from the viewpoint of gas dynamics, 
instead of conjugate conditions one can consider the problem with constant wall temperature 
(boundary conditions of the first sort) while in calculating heat transfer one can specify 
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Fig. 3. Wall temperature (a) and thermal flux into wall (b) vs 
time for various values of parameter e: I) e = 0.341; 2) 2.41: 3) 
6.82; 4) 15.15; 5) 75.8; 6) 758; 7) 7580; qw referred to p0 p0V~@0. 

the thermal flux on its surface (boundary condition of the second sort), calculated from the 
gas temperature gradient on the wall. On the other hand, at r % 0.4 evolution of the flow 
in the gas practically coincides with the evolution of a flow upon reflection of a shock wave 
from an adiabatic wall, while the wall temperature behind the reflected front differs by less 
than 5% from the value corresponding to the ideal theory of shock wave reflection [12]. In 
this case the thermal flux into the wall is close to zero over the entire time interval (see, 
for example, curve 1 of Fig. 3b) and to study the gas flow during shock wave reflection the 
condition ST/aS = 0 (boundary condition of the second sort) can be used on the phase bound- 
ary in place of the conjugate condition. In this case heat transfer in the wall can be cal- 
culated with only a temperature boundary condition (boundary condition of the first sort), 
which is obtained on the phase boundary for reflection of a shock wave from an adiabatic 
wall. 

Calculations performed for M = 5 show that the character of all the dependences consid- 
ered above is maintained unchanged. The quantitative estimates for the ranges of the dimen- 
sionless parameter s in which the limiting formulations with type I and II boundary conditions 
may be used also remain in force. This result permits a more solidly grounded specification 
of the wall thermal regime in calculating nonsteady state heat exchange during reflection 
of a normally incident shock wave. 

NOTATION 

x, Cartesian coordinate; t, time; u, p, p, T, p, X, velocity, density, pressure, temper- 
ature, viscosity, and thermal conductivity of gas; c~, c V, specific heat of gas at constant 
pressure and temperature; R, ideal gas constant; M, incident shock wave Mach number; PT, CT, 
XT, density, specific heat, and thermal conductivity of wall material; Tt, wall temperature; 
T w, temperature on phase boundary; qw, thermal flux from gas to wall. Subscripts: 0, unper- 
turbed value ahead of incident shock wave; ~, limit of calculation region; Pr = Cp~/l; Y = 
Cp/CV. 

LITERATURE CITED 

I. A. Geidon and I. Gerl, The Shock Tube in High Temperature Chemical Physics [Russian trans- 
lation], Mir, Moscow (1966); 

2. Yu. A. Dem'yanov and L. I. El'kin, "Effect of initial phase of shock wave reflection 
from a wall on establishment of flow and heat exchange processes," Izv. Akad. Nauk SSSR, 
Mekh. Zhidk. Gaze, No. i, 18-24 (1970). 

3. F. A. Goldsworthy, "The structure of a contact region, with application to the reflec- 
tion of a shock from a heat-conducting wall," J. Fluid Mech., ~, Pt. I, 164-176 (1959). 

4. Yu. M. Lipnitskii and A. V. Panasenko, "Calculation of one-dimensional nonsteady-state 
flows of viscous gas with the aid of an implicit divergent difference technique," Izv. 
Akad. Nauk SSSR, Mekh. Zhidk. Gaze, No. I, 97-104 (1977). 

5. V. V. Mareev and E. V. Prozorova, "Structure of a plane reflected shock wave," in: Flow 
of Viscous and Nonviscous Gas. Two-Phase Liquids [in Russian], Leningrad State Univ. 
(1981), pp. 84-89. 

6. L. G. Loitsyanskii, Liquid and Gas Mechanics [in Russian], Nauka, Moscow (1978). 
7. V. N. Vilyunov, Theory of Ignition of Condensed Materials [in Russian], Nauka, Novosi- 

birsk (1984). 

913 



8. M. Morduchow and P. Libby, "On a complete solution of the one-dimensional flow equations 
of a viscous, heat-conducting compressible gas," J. Aeronaut. Sci., 16, No. ii, 674-684 
(1949). 

9. S. Rubin and P. Khosla, "Higher-order numerical solutions using cubic splines," AIAA 
2nd Computation Fluid Dynamics Conference Proceedings, Hartford, CT, June 19-20, 1975 
(1975), pp. 55-65. 

i0. B. L. Lohar and P. C. Jain, "Variable mesh cubic spline technique for N-wave solution 
of Burgers' equation," J. Comput. Phys., 39, 433-442 (1981). 

ii. Yu. A. Polyakov, "Study of heat exchange in shock wave reflection," Teplofiz. Vys. Temp., 
!, No. 6, 879-888 (1965). 

12. G. Emmonds (ed.), Fundamentals of Gas Dynamics [Russian translation], IL, Moscow (1963). 

EFFECT OF VISCOSITY ON THE VORTEX STRUCTURE OF A FLOW AROUND 

A CYLINDER AND THE DRAG OF THE CYLINDER WITH AND WITHOUT A 

DISK IN FRONT OF IT 

V. K. Bobyshev, S. A. Isaev, 
and O. L. Lemko 

UDC 532.517.2 

Large-scale vortex structures appearing in a flow around a cylinder with and 
without a disk for Reynolds numbers from 40 to 2500 are studied numerically and 
experimentally. 

The use of detached flows in different practical applications, in particular, to form a 
forward detached zone by placing in front of a blunt body a diskotic attachment in order to 
reduce the head drag of the body [i], has stimulated the study of large-scale vortex struc- 
tures, arising near poorly streamlined bodies, based on physical experiments in a hydrodynamic 
tube and computer calculations. The combination of the methods of physical and numerical 
modeling enabled, on the one hand, obtaining more detailed information about the characteris- 
tic features of detached flow and the effect of geometric and flow parameters on the vortex 
structure, and on the other evaluating the reliability of the computational method used and 
its ability to describe correctly the basic features of the flow pattern as well as to predict 
with an accuracy adequate for practical applications its integral and local characteristics. 
The evolution of vortex structures for Reynolds number from 40 to 2500 is studied for the 
example of a uniform flow of an incompressible liquid around a cylinder of elongation X (~ = 
14) with and without a thin circular disk of radius r, placed coaxially in front of the flat 
face of the cylinder at a distance Z. Here and below all geometric dimensions are scaled 
to the radius of the cylinder R. In this paper attention is devoted primarily to the study 
of the effect of convection and diffusion on vortex formation and the determination of the 
relationship between the structure of detached flow around bodies and their integral and 
local characteristics, in particular, the head drag of blunted bodies. The velocity U and 
the density p of the incident flow are used as scaling parameters. The radius of the connec- 
ting rod is constant and equal to 0.07. 

In the experimental study of an axisymmetric, low-velocity, uniform flow of air around 
a disk-semiinfinite-cylinder arrangement [2], performed at high Reynolds number Re of the 
order of 105 , it was found that there exist optimal geometrical dimensions ropt and lopt, 
corresponding to minimum profile drag of the body. Thus, for example, for ropt = 0.75 and 
Zopt = 0.75 the profile drag coefficient of a body with this shape Cxp = 0.02, i.e., it is 
close to the drag coefficient of a body with a conveniently streamlined shape. In this paper, 
bodies of revolution of the same configuration with optimal or close to optimal dimensions 
at high Reynolds numbers in a laminar flow are studied. It is especially interesting to com- 
pare the role of vortex formation in the reduction of drag of systems of poorly streamlined 
bodies with the case of flow around individual bodies. 
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